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Abstract

In the last decade, house sparrow populations have shown a general decline, especially in

cities. Avian malaria has been recently suggested as one of the potential causes of this

decline, and its detrimental effects could be exacerbated in urban habitats. It was initially

thought that avian malaria parasites would not have large negative effects on wild birds

because of their long co-evolution with their hosts. However, it is now well-documented that

they can have detrimental effects at both the primo- and chronical infection stages. In this

study, we examined avian malaria infection and its physiological and morphological conse-

quences in four populations of wild house sparrows (2 urban and 2 rural). We did not find

any relationship between the proportions of infected individuals and the urbanisation score

calculated for our populations. However, we observed that the proportion of infected individ-

uals increased during the course of the season, and that juveniles were less infected than

adults. We did not detect a strong effect of malaria infection on physiological, morphological

and condition indexes. Complex parasite dynamics and the presence of confounding factors

could have masked the potential effects of infection. Thus, longitudinal and experimental

studies are needed to understand the evolutionary ecology of this very common, but still

poorly understood, wild bird parasite.

Introduction

Avian haemosporidian parasites consist of three genera (Plasmodium, Haemoproteus, Leucocy-
tozoon) transmitted by different insect vectors to birds [1], and have been extensively studied

in the last few decades as a model in evolutionary ecology [2]. Avian haemosporidian parasites

can be found in numerous species worldwide and their prevalence can reach very high per-

centages in some wild bird populations [3–9]. Due to a long co-evolution with their hosts,

it was initially suggested that these parasites would not have large negative effects on wild

birds [10]. On the other hand, these parasites had a huge detrimental effect on naive bird

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0237170 August 19, 2020 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bichet C, Brischoux F, Ribout C,

Parenteau C, Meillère A, Angelier F (2020)

Physiological and morphological correlates of

blood parasite infection in urban and non-urban

house sparrow populations. PLoS ONE 15(8):

e0237170. https://doi.org/10.1371/journal.

pone.0237170
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populations, especially following their introduction (e.g. the introduction of Plasmodium relic-
tum and its vector Culex quinquefasciatus to the Hawaiian islands [11–13]).

The effects of avian malaria vary throughout the course of the infection. Following the

primo infection, the host experiences an acute phase with a high level of parasitaemia [1], with

important red blood cell destructions and tissue damages caused by the parasite development

[14]. Infected individuals suffer from substantial costs, such as reduced activity [15], impaired

growth [16], reduced immunity [17], poor body condition [18], anaemia [19, 20], and even

death [21–23]. If the bird survives this acute phase, the infection enters into a chronic phase,

characterized by a much lower parasitaemia alternates with cycles of parasitaemia recrudes-

cence [24, 25]. This phase is also associated with significant costs, [20, 22], such as reduced

breeding success [26] and performance [27–29].

In the last decade, urban house sparrow populations have declined in many cities [30–33],

and interestingly, birds presenting higher avian malaria parasitaemia have recently been sug-

gested as a possible cause of these population collapses [34]. Across avian species, there is

mixed evidence for a difference in prevalence of haemosporidian parasites between urban and

non-urban populations. While some studies found a higher prevalence in urban habitats [35–

37], others found no difference [38] or even a lower prevalence [39–41]. Regarding house spar-

rows, one study found no difference in prevalence between urban and rural areas [7], while

another study found a higher prevalence in non-urban birds, using both field and experimen-

tal data [42]. Nevertheless, the detrimental effect of malaria on survival and reproduction

could be exacerbated in cities because of additional urban environmental constraints. Accord-

ingly, several studies have shown that urbanisation is associated with multiple morphological

and physiological changes in house sparrows. For example, urban sparrows are usually smaller,

in poorer condition [43–45], and have a lower quality plumage [46] than rural ones. They also

suffer from higher oxidative stress, and higher stress levels than rural sparrows [47–49]. These

changes have been related to low food availability and quality [43, 44, 50, but see 51], high

rates of pollution [47, 51], disturbance (traffic noise for example [52]), or even to a recent

increase in predator pressure [53, 54]. However, the potential impact of malaria infection on

morphological and physiological attributes still needs to be clarified in wild bird populations

(see [45] for a study on house sparrows and see [20] for a study on red-winged blackbirds, Age-
laius phoeniceus).

In this study, we examined avian malaria infection and its physiological and morphological

correlates in four populations of wild house sparrows (2 urban and 2 rural). First, we investi-

gated which factors could predict blood parasite infection. Particularly, we tested how malaria

infection differs (1a) between populations (urban or rural) characterized by an urbanisation

score, (1b) throughout the breeding season, and (1c) between juvenile and adult sparrows.

Because previous studies comparing blood parasite prevalence between urban and non-urban

populations produced mixed results, it was difficult to make predictions for the present study.

Nevertheless, we expected that malaria infection would increase throughout the breeding sea-

son, since ambient temperature seems to be an important prevalence predictor, in temperate

areas [55]. Similarly, we predicted that malaria infection would be higher in adults compared

to juveniles because adults could have been infected during previous seasons [7]. Second, we

explored if malaria infection status could predict several morphological (body size, body

mass), physiological (stress hormones levels, haematocrit) and condition (fat and muscle

scores, body condition) attributes. We tested whether infection status could (2a) affect the

physiology, the morphology and the condition of house sparrows and (2b) account for the dif-

ferences between urban and rural sparrows. In a previous paper using the same data set [44],

we reported that urban house sparrows were in poorer body condition than rural sparrows,
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and a previous study also suggested that malaria infection can reduce survival in adult and

juvenile house sparrows [34]. Accordingly, we predicted that malaria infection would impair

growth (i.e. reduced body size) and would be associated with a poor health status (i.e. low

body condition, low haematocrit, high stress hormones levels). Avian malaria infection seems

to be particularly detrimental following the primo infection [21, 56, 57], which is likely to

occur at the juvenile stage when sparrows are especially sensitive to environmental and urban-

related constraints [58, 59]. Therefore, we predicted that malaria infection would be especially

detrimental in juveniles compared to adults. Finally, we also predicted that the detrimental

influence of avian malaria would be exacerbated for urban sparrows because of the additional

and cumulative constraints of the urban environment [43, 44, 47, 53].

Material and methods

Ethics statement

This work was conducted according to all institutional and national guidelines for animal care

and use. The experimental protocols have been approved by the ethics committee of Poitou-

Charentes, France (authorization number: CE2012-7). The permit for capture, sampling and

banding was delivered by the ‘Centre de Recherches sur la Biologie des Populations d’Oiseaux’

(National Museum of Natural History, Paris) (permit number: 13794). The permits to sample

public areas (CEBC and La Rochelle populations) were delivered by the ‘Préfecture de la Cha-

rente-Maritime’, the ‘Préfecture des Deux-Sèvres’ and the ‘Centre d’Etudes Biologiques de

Chizé’ (hereafter CEBC).

Study sites and sampling

We captured 113 house sparrows (68 adults and 45 juveniles) from four populations located in

Western France (Table 1, Fig 1) using mist-nets during the 2013 breeding season (11th of May

- 23rd of August), in the context of a previous study [44]. These populations were characterized

by an urbanisation score determined in the previous study [44]. Two populations were located

in medium-sized cities: La Rochelle (46˚08’52.8”N, 1˚09’12.7”W, 75,000 inhabitants, urbanisa-

tion score = 2.10) and Niort (46˚18’46.4”N, 0˚28’44.3”W, 58,000 inhabitants, urbanisation

score = 1.61) (Fig 1, Table 1). The two other populations were located in rural habitats, either

in a village (Villefollet, 46˚07’37.7”N, 0˚16’04.4”W, 200 inhabitants, urbanisation score =

-1.21) or at a research station surrounded by a forest (CEBC, 46˚08’50.5”N, 0˚25’34.2”W,

urbanisation score = -2.50) (Fig 1, Table 1).

Within 3 minutes after capture, we collected a blood sample from the brachial vein of each

bird (150μl) to measure ‘baseline corticosterone’ levels [60]. The blood collected was also used

to measure haematocrit and for molecular analyses (see below). We collected a second blood

sample (150μl) after 30 minutes, to measure ‘stress-induced corticosterone’ levels [61]. Then,

we banded birds with a numbered metal band, and measured their weight (hereafter ‘body

mass’), wing, and tarsus length (all individuals measured by one experimenter, A.M.). We

determined fat and muscle scores as previously described [58, 62]. We calculated an index of

body condition using the residuals of the linear regression of body mass vs. tarsus length

(F1,111 = 45.98, p< 0.001, R2 = 0.49). We determined the age of the birds (adult or juvenile)

based on plumage characteristics [63], and then released birds at their site of capture. In the

case of an individual was recaptured, we immediately released it, to avoid any useless addi-

tional stress.
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Physiological measurements

To measure haematocrit (determined by one experimenter, A.M.), we centrifuged 20μl of

whole blood in a heparinized micro-capillary tube at 11,000 rpm for 3 minutes, and calculated

the ratio between the volume of red blood cells and the total volume of whole blood (n = 113).

For each bird, we centrifuged blood samples (4,500 rpm, 7 min), separated plasma from red

blood cells, transferred samples to separate tubes, and stored them at -20˚C until analyses. We

measured plasma concentration of corticosterone, from the samples collected 3 and 30 min-

utes after capture, using a radio-immunoassay, in duplicate, according to the protocol devel-

oped by [64]. The minimum detectable corticosterone level was 0.28 ng.ml-1, and the intra-

and inter-assay coefficients of variation were 8.27% and 12.01%, respectively.

Molecular analyses

We also stored red blood cells (approx. 75 μl) at -20˚C until analyses. We extracted DNA from

red blood cells using the commercial kit NucleoSpin Blood (Macherey-Nagel Gmbh, Ger-

many) and followed the provided instructions (n = 113). We used a Nanodrop (ND-1000) to

standardize the concentration of the extracted DNA at 20ng.μl-1, and used these standardized

samples for molecular sexing and parasite screening analyses.

Fig 1. Location of the four house sparrow populations sampled in this study. Brown and green dots represent urban and rural sites, respectively.

https://doi.org/10.1371/journal.pone.0237170.g001
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Molecular sexing. We determined the sex of adults visually (n = 68) [63], but determined

the sex of juveniles (n = 45) using the molecular technique described in [65].

Parasite screening. We detected the presence of blood parasites using a nested PCR [66],

which targets the cytochrome b gene of Plasmodium, Leucocytozoon and Haemoproteus in the

extracted DNA (n = 113). We slightly modified the protocol described in [66] by using 40ng

of total genomic DNA at 20ng. μl-1, 0.8mM of each dNTP, 3.5mM of MgCl2, 1.2μM of each

primer and 0.625 units of Taq polymerase G2 Hot Start (Promega). The first PCR amplified a

580-bp-long fragment from the three blood parasite genera (primers HaemNFI/HaemNR3

[67, 68]). For the second PCRs, which amplified a 524-bp-long fragment, a first couple of

primers (HaemF/HaemR2 [67, 68]) was used to detect indifferently Plasmodium or Haemopro-
teus, and a second couple of primers (HaemFL/HaemR2L [66]) to detect Leucocytozoon. This

method is highly repeatable, with a minimum limit of detection of one infected blood cell per

100,000. We ran the products of the amplifications on a 1.8% agarose gel at 100V for 1h30, and

visualized them with an ethidium bromide stain under ultraviolet light. We tested negative

samples twice to minimize false negatives. We did not detect any positive blood sample for

Leucocytozoon.

Statistical analyses

To investigate which factors could predict blood parasite infection, we used a Generalized Lin-

ear Mixed Model (GLMM) with a logit link function and a variance given by a binomial distri-

bution. The infection status of the individual (infected or uninfected) was the dependent

variable and the age (categorical, adult or juvenile), the sex (categorical, male or female) of the

bird, and the urbanisation score, were the explanatory variables. We also added capture date

(standardized Julian date) as a covariate. The population was added as random intercept. To

test if the effects of age and sex were consistent across the breeding season and the different

populations, we also considered all first-order interactions.

To test if blood parasite infection could predict physiological, morphological and condition

measures, we built nine different Linear Mixed Models (LMMs) using one of the physiological

parameters (i.e. haematocrit, baseline corticosterone levels, and stress-induced corticosterone

levels), morphological measures (i.e. body mass, wing, tarsus), or condition indexes (i.e. fat

score, muscle score, and body condition) as the dependent variable. The models with fat and

muscle scores as dependent variables were, however, two GLMs fitted with a Poisson distribu-

tion. Infection status (infected or uninfected) was added as the explanatory variable and the

urbanisation score, age (categorical, adult or juvenile), and sex (categorical, male or female)

were added as covariates. The population was added as random intercept. To test if the effect

of the infection status was consistent across ages, sexes, urbanisation score and breeding sea-

son, we also considered all first-order interactions, as well as the second-order interaction

between infection status, age, and sex.

In our dataset, there was collinearity between the urbanisation score, age, and capture date

(Variance inflation factors > 1/(1-R2) [69]) due to the absence of juveniles and the absence of

sampling in the La Rochelle population (with the higher urbanisation score) at the beginning

of the season (from mid-May to mid-June). To limit this problem, we also ran LMMs similar

to those presented above, but separating adults (n = 68) and juveniles (n = 45). One of the sam-

pled juveniles was an outlier with a small body mass and short wing length. We ran our models

with and without this individual and it did not modify our conclusions.

All models were run with R 3.6.0 [70] using the functions ‘glmer’ and ‘lmer’ implemented

in the package ‘lme4’ [71] using restricted maximum likelihood estimates of the parameters,

and by conducting a type III Wald Chi2 tests using the package ‘car’ [72]. Non-significant
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interactions were removed from the presented models in the Results, with the level of signifi-

cance set to α = 0.05, to allow for a straightforward interpretation of the effect of single terms.

Post-hoc tests for pairwise comparisons were conducted using the function ‘contrast’ from the

R package ‘lsmeans’, after the least-square means were calculated using the function ‘lsmeans’

[73]. Parameter estimates are given as the mean ± 1 standard error (SE). The conditional

coefficients of determination were calculated for all the models using the function ‘r.squar-

edGLMM’ implemented in the package ‘MuMIn’ [74].

Results

Blood parasite infection in house sparrows

The probability of being infected was not correlated with the urbanisation score (Table 2; Fig

2a). The probability of being infected increased during the breeding season, from May to

August (Table 2, Fig 2b). Juvenile birds were less infected than adults (Table 2, Fig 2).

In juveniles, the probability of being infected increased during the breeding season

(Table 2; Fig 2b), and male juveniles were more infected than female juveniles (Table 2).

In adults, the probability of being infected marginally increased during the breeding season

(Table 2; Fig 2b) but did not differ between sexes (Table 2).

Relationships between parasite infection and physiology

Infection status was not associated with any of the three physiological parameters investigated

(haematocrit, baseline corticosterone levels, and stress-induced corticosterone levels, Table 3a,

Fig 3a, 3b and 3c).

We also did not find an association between infection status and physiology in the models

where adults and juveniles were analysed separately (Table 3a). We could mentioned, however,

the marginal relationship between infection status and haematocrit in juveniles (infected juve-

niles had a slightly lower haematocrit than uninfected ones, Table 3a.1; Fig 3a).

Relationships between parasite infection and morphology

Infection status did not predict any of the three morphological measures (body mass, tarsus

length, wing length, Table 3b, Fig 3d, 3e and 3f). We detected an interaction between infection

Table 2. Results from the GLMMs testing the relationship between age, sex, urbanisation score and capture date,

and blood parasite infection status for all house sparrows (n = 113), adults (n = 68) and juvenile (n = 45) without

non-significant interaction terms. Significant effects (p< 0.05) are highlighted in bold. Conditional R2 provided the

proportion of explained variance.

Dependent

variable

Infection status

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE z-

value

p-

value

Estimate ± SE z-

value

p-

value

Estimate ± SE z-

value

p-

value

Intercept -0.349 ± 0.340 -1.025 0.305 -0.185 ± 0.365 -0.508 0.612 -3.437 ± 1.461 -2.999 0.003

Age (juvenile) -1.288 ± 0.481 -2.679 0.007 - - - - - -

Sex (male) 0.720 ± 0.421 1.711 0.087 0.303 ± 0.503 0.603 0.546 1.986 ± 0.872 2.278 0.023

Urbanisation

score

4.888.10−3 ±
0.11

0.044 0.965 -0.017 ± 0.136 -0.128 0.898 0.100 ± 0.205 0.468 0.640

Capture date 0.622 ± 0.248 2.508 0.012 0.449 ± 0.261 1.722 0.085 2.085 ± 0.980 2.127 0.033

Random

Population

(variance ± SD)

0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Conditional R2 0.140 0.063 0.421

https://doi.org/10.1371/journal.pone.0237170.t002
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status, age and sex for the body mass (Table 3b.1) and for the tarsus length (Table 3b.2), indi-

cating that the influence of infection status on body mass and tarsus length differed between

juveniles and adults (Fig 3d and 3e) and between males and females. However, post-hoc

comparisons indicated that body mass and tarsus length did not significantly differ between

infected or non-infected juveniles and adults, or males and females (all p> 0.300).

When adults were analysed separately, the infection status was not associated with body

mass, tarsus length, nor wing length (Table 3b). We observed an interaction between infection

status and sex for the body mass (Table 3b.1, S1a Fig) and for the tarsus length (Table 3b.2,

S1b Fig). For instance, infected females seemed to have a lower body mass than non-infected

females, while infected males seemed to have a higher body mass than non-infected males (S1a

Fig), although post-hoc comparisons were not statistically significant (all p-values > 0.150).

When juveniles were analysed separately, we found an interaction between infection status

and capture date for tarsus length (Table 3b.2), probably because both juvenile size and malaria

infection increased throughout the breeding season.

Relationships between parasite infection and condition

Infection status was not associated with sparrow condition (body condition, fat, and muscle

scores, Table 3c). We only found an interaction between infection status and age for the body

condition index (Table 3c.3), indicating that the influence of infection status on body condi-

tion differed between adults and juveniles (Fig 3g). This was confirmed by additional analyses:

when adults were analysed separately, infection status was not associated with body condition

(Table 3c.3). However, in adults, we observed an interaction between infection status and

urbanisation score for the body condition index (Table 3c.3, S2 Fig). When juveniles were

Fig 2. (A) Proportion of infected individuals in relation to population and urbanisation score, and (B) infection status (0 = uninfected, 1 = infected) in

relation to capture date, in adults and juvenile house sparrows. (A) Dots with error bars indicate the means (± SE). Black dots correspond to the adults

and grey dots to the juveniles. (B) Dots represent the infection status of the individuals. The black and grey solid lines with standard errors (grey areas)

represent the model predictions for adults and juveniles, respectively.

https://doi.org/10.1371/journal.pone.0237170.g002
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Table 3. Results from the LMMs testing the relationship between infection status, age, sex, and urbanisation score, and (A) physiological parameters, (B) morpho-

logical measurements and (C) condition indices for all house sparrows (n = 113), adults (n = 68) and juvenile (n = 45) without non-significant interaction terms.

A. Physiological parameters

Dependent variable 1. Haematocrit

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 0.473 ± 0.009 48.209 <0.001 0.469 ± 0.013 36.724 <0.001 0.433 ± 0.012 34.772 <0.001

Infection status (infected) -6.339.10−3 ± 1.043.10−2 -0.608 0.545 1.780.10−3 ±
1.324.10−2

0.134 0.893 -3.177.10−2 ±
1.759.10−2

-1.81 0.078

Age (juvenile) -2.836.10−2 ± 1.144.10−2 -2.479 0.015 - - - - - -

Sex (male) 9.704.10−4 ± 9.911.10−3 0.098 0.922 -1.194.10−3 ±
1.304.10−2

-0.092 0.927 1.409.10−2 ±
1.613.10−2

0.873 0.388

Urbanisation score 2.941.10−3 ± 3.138.10−3 0.937 0.441 2.805.10−3 ±
4.749.10−3

0.591 0.614 2.713.10−3 ±
3.932.10−3

0.690 0.494

Capture date -1.979.10−2 ± 5.865.10−3 -3.374 0.001 -2.477.10−2 ±
6.816.10−3

-3.634 <0.001 2.355.10−3 ±
1.246.10−2

0.189 0.851

Random Population

(variance ± SD)

4.411.10−5 ± 6.642.10−3 1.513.10−4 ±
1.230.10−2

0.000 ± 0.000

Conditional R2 0.246 0.210 0.079

Dependent variable 2. Baseline

corticosterone

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 4.461 ± 0.554 8.046 <0.001 4.439 ± 0.799 5.556 <0.001 1.947 ± 0.362 5.368 <0.001

Infection status (infected) -0.142 ± 0.618 -0.230 0.819 6.545.10−2 ± 0.933 -0.070 0.944 -0.869 ± 0.512 -1.696 0.098

Age (juvenile) -2.156 ± 0.679 -3.177 0.002 - - - - - -

Sex (male) -0.849 ± 0.596 -1.425 0.157 -1.117 ± 0.921 -1.214 0.230 -3.699.10−2 ± 0.469 -0.079 0.938

Urbanisation score -0.054 ± 0.155 -0.346 0.730 5.577.10−2 ± 0.268 0.208 0.836 9.483.10−2 ± 0.115 0.828 0.413

Capture date -0.770 ± 0.361 -2.135 0.035 -0.947 ± 0.489 -1.937 0.057 -0.111 ± 0.363 -0.305 0.762

Urbanisation score:capture date 0.386 ± 0.159 2.431 0.017 0.516 ± 0.255 2.022 0.048 - - -

Random Population

(variance ± SD)

0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Conditional R2 0.282 0.179 0.098

Dependent variable 3. Stress-induced

corticosterone

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 33.669 ± 3.230 10.424 0.002 34.303 ± 3.283 10.446 <0.001 19.868 ± 3.585 5.542 0.003

Infection status (infected) -1.486 ± 1.830 -0.812 0.419 -2.081 ± 2.499 -0.833 0.408 -1.185 ± 2.563 -0.462 0.647

Age (juvenile) -8.334 ± 2.028 -4.109 <0.001 - - - - - -

Sex (male) -4.256 ± 1.765 -2.412 0.018 -6.056 ± 2.488 -2.434 0.018 2.553 ± 3.053 0.836 0.408

Urbanisation score -0.963 ± 1.520 -0.633 0.591 -0.372 ± 1.489 -0.250 0.824 -0.812 ± 1.491 -0.544 0.640

Capture date -5.452 ± 1.083 -5.034 <0.001 -6.246 ± 1.323 -4.722 <0.001 2.031 ± 2.977 0.682 0.499

Urbanisation score:capture date 1.202 ± 0.482 2.491 0.014 1.762 ± 0.699 2.522 0.014 - - -

Sex (male):capture date - - - - - - -7.527 ± 3.492 -2.156 0.038

Random Population

(variance ± SD)

30.920 ± 5.561 24.940 ± 4.994 27.931 ± 5.285

Conditional R2 0.607 0.536 0.476

B. Morphological parameters

Dependent variable 1. Body mass

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 26.856 ± 0.496 54.146 <0.001 26.920 ± 0.414 65.047 <0.001 23.860 ± 0.635 37.591 <0.001

(Continued)
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Table 3. (Continued)

Infection status (infected) -0.334 ± 0.631 -0.529 0.598 -0.521 ± 0.504 -1.034 0.305 0.253 ± 0.852 0.297 0.768

Age (juvenile) -3.147 ± 0.650 -4.842 <0.001 - - - - - -

Sex (male) -0.480 ± 0.582 -0.825 0.411 -0.511 ± 0.467 -1.094 0.278 0.125 ± 0.784 0.159 0.874

Urbanisation score -0.636 ± 0.190 -3.346 0.037 -0.439 ± 0.159 -2.767 0.106 -0.461 ± 0.216 -2.129 0.172

Capture date -0.486 ± 0.222 -2.184 0.031 -0.487 ± 0.181 -2.690 0.009 0.991 ± 0.607 1.633 0.110

Infection status (infected): age

(juvenile)

1.561 ± 1.160 1.346 0.181 - - - - - -

Infection status (infected):sex

(male)

1.394 ± 0.862 1.617 0.109 1.475 ± 0.693 2.129 0.037 - - -

Sex (male): age (juvenile) 1.286 ± 0.921 1.396 0.166 - - - - - -

Age (juvenile):capture date 1.635 ± 0.501 3.267 0.001 - - - - - -

Urbanisation score:sex (male) 0.384 ± 0.176 2.178 0.032 - - - - - -

Infection status (infected):age

(juvenile):sex (male)

-3.311 ± 1.531 -2.162 0.033 - - - - - -

Random Population

(variance ± SD)

0.289 ± 0.538 0.241 ± 0.491 0.154 ± 0.393

Conditional R2 0.511 0.466 0.172

Dependent variable 2. Tarsus length

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 18.778 ± 0.259 72.594 <0.001 18.825 ± 0.273 68.952 <0.001 17.878 ± 0.148 120.721 <0.001

Infection status (infected) -0.466 ± 0.250 -1.862 0.066 -0.453 ± 0.276 -1.642 0.106 -0.795 ± 0.480 -1.657 0.106

Age (juvenile) -1.105 ± 0.259 -4.268 <0.001 - - - - - -

Sex (male) -0.295 ± 0.233 -1.267 0.208 -0.335 ± 0.256 -1.306 0.197 0.192 ± 0.191 1.005 0.321

Urbanisation score -0.137 ± 0.109 -1.254 0.337 -0.174 ± 0.118 -1.476 0.275 -0.081 ± 0.047 -1.742 0.089

Capture date -0.255 ± 0.092 -2.784 0.006 -0.285 ± 0.100 -2.861 0.006 -0.081 ± 0.152 -0.531 0.598

Infection status (infected): age

(juvenile)

1.206 ± 0.461 2.614 0.010 - - - - - -

Infection status (infected):sex

(male)

0.769 ± 0.343 2.240 0.027 0.774 ± 0.380 2.041 0.046 - - -

Infection status (infected):capture

date

- - - - - - 1.527 ± 0.518 2.950 0.005

Sex (male): age (juvenile) 0.745 ± 0.370 2.016 0.046 - - - - - -

Age (juvenile):capture date 0.420 ± 0.200 2.104 0.038 - - - - - -

Urbanisation score:sex (male) - - - - - - - - -

Urbanisation score:capture date 0.079 ± 0.038 2.092 0.039 - - - - - -

Infection status (infected):age

(juvenile):sex (male)

-1.290 ± 0.611 -2.112 0.037 - - - - - -

Random Population

(variance ± SD)

0.156 ± 0.395 0.165 ± 0.406 0.000 ± 0.000

Conditional R2 0.515 0.454 0.352

Dependent variable 3. Wing length

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 74.375 ± 0.399 186.237 <0.001 74.168 ± 0.367 201.898 <0.001 69.810 ± 0.746 93.544 <0.001

Infection status (infected) 0.622 ± 0.451 1.379 0.171 0.559 ± 0.434 1.288 0.203 1.011 ± 1.054 0.959 0.343

Age (juvenile) -4.980 ± 0.492 -10.112 <0.001 - - - - - -

Sex (male) 2.400 ± 0.428 5.600 <0.001 2.864 ± 0.423 6.759 <0.001 1.548 ± 0.967 1.602 0.117

Urbanisation score -0.113 ± 0.113 -0.100 0.920 -0.049 ± 0.115 -0.428 0.670 2.367.10−3 ± 0.236 -0.010 0.992

Capture date -0.334 ± 0.252 -1.327 0.187 -0.308 ± 0.221 -1.394 0.168 -0.541 ± 0.747 -0.724 0.473

(Continued)
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Table 3. (Continued)

Random Population

(variance ± SD)

0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Conditional R2 0.648 0.439 0.128

C. Condition indexes

Dependent variable 1. Fat score

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 1.073 ± 0.103 10.444 <0.001 1.155 ± 0.121 9.510 <0.001 1.261 ± 0.139 9.029 <0.001

Infection status (infected) -0.055 ± 0.115 -0.483 0.629 -0.101 ± 0.150 -0.676 0.499 -3.837.10−2 ± 0.186 -0.206 0.837

Age (juvenile) 0.261 ± 0.122 2.140 0.032 - - - - - -

Sex (male) 0.016 ± 0.109 0.148 0.882 9.351.10−2 ± 0.146 -0.642 0.521 0.174 ± 0.172 1.008 0.314

Urbanisation score 0.047 ± 0.029 1.625 0.104 8.081.10−3 ±
3.955.10−2

0.204 0.838 9.716.10−2 ±
4.266.10−2

2.278 0.023

Capture date 0.068 ± 0.067 1.023 0.306 9.309.10−2 ±
7.646.10−2

1.217 0.223 2.872.10−2 ± 0.139 0.207 0.836

Random Population

(variance ± SD)

0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Conditional R2 0.137 0.043 0.138

Dependent variable 2. Muscle score

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept 1.469 ± 0.088 16.761 <0.001 1.403 ± 0.103 13.577 <0.001 1.399 ± 0.133 10.547 <0.001

Infection status (infected) -0.064 ± 0.099 -0.643 0.521 -6.686.10−2 ± 0.119 -0.563 0.573 -4.096.10−2 ± 0.189 -0.217 0.829

Age (juvenile) -0.097 ± 0.110 -0.884 0.376 - - - - - -

Sex (male) 0.071 ± 0.094 0.761 0.447 0.175 ± 0.116 1.510 0.131 9.867.10−2 ± 0.173 -0.570 0.569

Urbanisation score 3.268.10−3 ± 2.485.10−2 0.132 0.895 2.781.10−3 ±
3.137.10−2

-0.089 0.929 -5.04.10−3 ±
4.22.10−2

-0.119 0.905

Capture date -0.050 ± 0.054 -0.925 0.355 -7.359.10−2 ±
5.986.10−2

-1.229 0.219 4.273.10−2 ± 0.135 0.317 0.751

Random Population

(variance ± SD)

0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Conditional R2 0.041 0.075 0.018

Dependent variable 3. Body condition

All birds (n = 113) Adults (n = 68) Juveniles (n = 45)

Parameter Estimate ± SE t-value p-value Estimate ± SE t-value p-value Estimate ± SE t-value p-value

Intercept -0.032 ± 0.140 -0.225 0.826 -5.070.10−2 ± 0.185 -0.274 0.794 -8.445.10−2 ± 0.126 -0.668 0.508

Infection status (infected) -0.124 ± 0.156 -0.794 0.429 -9.444.10−2 ± 0.170 -0.554 0.582 0.407 ± 0.178 2.281 0.028

Age (juvenile) -0.036 ± 0.167 -0.215 0.830 - - - - - -

Sex (male) 0.067 ± 0.123 0.546 0.586 5.616.10−2 ± 0.170 0.329 0.743 0.162 ± 0.164 0.986 0.330

Urbanisation score -0.032 ± 0.048 -0.662 0.573 -0.153 ± 0.085 -1.812 0.157 3.098.10−2 ±
3.991.10−2

0.776 0.442

Capture date -0.155 ± 0.073 -2.130 0.036 -0.146 ± 0.088 -1.657 0.103 -0.231 ± 0.126 -1.828 0.075

Infection status (infected):age

(juvenile)

0.536 ± 0.260 2.069 0.041 - - - - - -

Infection status (infected):

urbanisation score

- - - 0.193 ± 0.088 2.199 0.032 - - -

Random Population

(variance ± SD)

0.018 ± 0.135 5.279.10−2 ± 0.298 0.000 ± 0.000

Conditional R2 0.140 0.236 0.196

Significant effects (p < 0.05) are highlighted in bold. Conditional R2 provided the proportion of explained variance. ‘-’ means a parameter was not fitted to the model

and ‘:’ represents interactions.

https://doi.org/10.1371/journal.pone.0237170.t003
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analysed separately, we found an association between infection status and body condition

(Table 3c.3), indicating that infected juveniles had a higher body condition than uninfected

juveniles (mean ± SE of body condition for infected juveniles = 0.24 ± 0.12, mean of body

condition ± SE for uninfected juveniles = -0.12 ± 0.09; Fig 3g).

Discussion

Blood parasite infection in house sparrows

Our study, conducted in urban and rural wild populations of house sparrows, provides several

pieces of information regarding blood parasite infection in this species. The number of

Fig 3. (A) Haematocrit, (B) baseline corticosterone level, (C) stress-induced corticosterone level, (D) body mass, (E) tarsus length, (F) wing length

and (G) body condition in relation to infection status (0 = uninfected, 1 = infected) and age. Dots represent the raw data. Grey boxplots represent

adults and white boxplots represent juveniles.

https://doi.org/10.1371/journal.pone.0237170.g003
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infected individuals was not correlated with the urbanisation score defined in our four popula-

tions. Similarly, other previous studies did not find differences in prevalence between urban

and rural habitats [38], even in the same biological model [7]. However, other contrasting

results prevent us from suggesting a conclusive pattern, especially because previous studies

found that avian malaria prevalence can differ between habitats and can be related to the

degree of urbanisation [35–37, 39–42]. Changes in climatic conditions (mainly temperature

and precipitation) and habitat characteristics can affect both vector-borne parasites and their

insect vectors (e.g. reproductive cycle), and thus affect prevalence [36, 55, 75–77]. However,

the populations investigated in this study are probably too close geographically to represent

marked differences in climate (but see for instance [78]). One might also argue that the sam-

pled cities are not large enough to observe any effect of urbanisation on parasite infection. Yet,

previous studies reported morphological and physiological differences between the same

urban and rural populations [44, 49]. Accordingly, at a larger scale of sampling, the degree of

urbanisation did not correlate with Plasmodium prevalence in house sparrows either, even if

larger cities were included [7]. Altogether, these studies seem to indicate that malaria preva-

lence would not be strongly affected by urbanisation in house sparrows, in our study system.

If prevalence can be affected by climatic conditions, it is expected that seasonality would

explain a significant amount of the variation in malaria prevalence, especially in temperate

areas, where vector abundance and susceptible host availability are likely to vary [79, 80].

Indeed, we observed that the number of infected individuals increased during the breeding

season (May-August). This could be explained by an increase in vector abundance in the sum-

mer, as well as an increase in the number of fledglings and juveniles that are susceptible to

being primo-infected [81, 82]. This latter hypothesis seems to be confirmed by an overall

increase in the number of infected individuals during the course of the breeding season and

by a higher number of infected individuals in juveniles than in adults, which has also been

observed in previous studies [7, 83].

Relationships between parasite infection and physiology

In a previous companion article using this data set, we demonstrated that physiology was not

dramatically affected by the degree of urbanisation [44]. In this study, we examined avian

malaria infection status and we specifically aimed to test its impact on physiology in house

sparrows living in urban and rural places. We did not detect any physiological (i.e. haemato-

crit, baseline and stress-induced corticosterone) differences between infected and uninfected

birds. Some studies, also in natural population, have investigated the association between

physiological variables and blood parasite infection, and they produced mixed results: blood

parasite infection was associated with detrimental effects on physiology in some but not all

studies [20, 80, 84–89].

Several previous studies observed a lower haematocrit in infected birds compared to unin-

fected birds in multiple species, such as the red-winged blackbird [17, 20, 84, 85, 90]. Haemato-

crit is usually considered as a relevant marker integrating both red cell damage due to parasites,

as well as costs of the immune response [90, 91], including destruction of like red blood cells by

T-cell activity [92, 93]. In agreement, our analyses detected a trend for infected juveniles to have

a lower haematocrit than uninfected juveniles, but the absence of significance prevents any con-

clusion. It is possible that heavily infected juveniles with a low haematocrit die quickly and thus

were not sampled.

In previous studies, experimental elevation of corticosterone reduced parasite resistance

(e.g. for avian malaria: [94, 95]), possibly due to the immunosuppressive effect of glucocorti-

coids [96]. However, this result has not always been confirmed in observational studies [80, 85,
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86]. Other studies also found that higher corticosterone levels increased haemosporidian para-

site tolerance [85], possibly due to tissue repair enhancement and/or damage limitations [96–

98]. In addition, malaria could also lead to energetic costs, which may translate into increased

corticosterone levels [99–101]. Here, we did not find any relationship between malaria infec-

tion and baseline or stress-induced corticosterone levels, suggesting that Hypothalamic-pitui-

tary-adrenal axis function is not dramatically affected by malaria infection. In line with the

present study, previous investigations often failed to detect any associations between infection

and corticosterone levels [20, 85, 102], while significant, but mixed results were found when

investigating the relationship between corticosterone levels and parasite intensity [80, 85, 86].

Relationships between parasite infection, condition, and morphology

In our previous companion article [44], we demonstrated that the degree of urbanisation had

an effect on some morphological variables and on some proxies of body condition. Here, we

examined whether malaria infection status could affect these morphological variables in urban

and rural house sparrows. According to the significant interactions that we detected, the rela-

tionships between blood parasite infection and morphology and condition appear to be com-

plex. Intricate and inconsistent findings were previously reported in several studies [6, 7, 14,

17, 20, 84, 89, 90, 103, 104]. For example, Jiménez-Peñuela et al. found that infected house

sparrows are in better condition than uninfected ones in wild populations [45], while Marzal

et al. found the opposite pattern in wild house martins [27]. In addition, experimental captive

studies did not find relationship between avian malaria infection status in several bird species

[20, 105]. This may be because hosts in good condition may be able to allocate enough energy

to trigger efficient immune responses [106, 107]; however, good condition may provide more

resources for the parasite, which could increase virulence without leading to mortality [108–

110]. Overall, our results indicate that infected juveniles are larger and in better condition than

uninfected juveniles, and a similar result was found in another study on the same species [45].

Blood parasites may be associated with an increased risk of mortality [21, 23, 83], especially

during primo infection, and this risk may increase when juveniles are in poor condition or not

fully grown (small and light individuals, [16, 18, 111]). This may explain why we, unexpect-

edly, found that infected juveniles were larger and in better condition that uninfected ones.

Conversely, in adults, infected birds were overall in poorer condition than uninfected individ-

uals, suggesting that infection may have energetic costs (immune response, lower activity and

feeding, and higher metabolism [17, 22, 95]).

Underlying hypotheses

The absence of strong detectable effects of parasite infections on house sparrow physiology,

morphology, and condition could be explained by three main hypotheses. First, the seasonality

of blood parasite emergence could create co-variation with some factors, such as bird age,

chick emancipation and sampling date, which could decrease statistical power and mask exist-

ing effects. Second, the sampled populations could be highly tolerant to the parasite, which

prevent the detection of any effects, although the regional cause of such potential tolerance

remains difficult to explain. Tolerance could be an adaptive strategy to minimize the negative

impact of infection and the cost of resistance, and should be particularly suitable for endemic

and chronic diseases [112, 113], such as haemosporidian parasites in the studied area [1, 114].

However, the balance between tolerance and resistance is still poorly understood for these par-

asites [85, 89, 95]. Third, strong selection pressures imposed by blood parasites could also

explain the absence of results. In field studies, only birds that are able to fly can be caught and

sampled. Infected birds that exhibit substantial disease symptoms may be completely absent
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from the study due to considerably reduced their activity levels [15] or because they died

quickly after infection [21]. As suggested by Jiménez-Peñuela et al. in their study [45], the

remaining infected birds sampled could be the highest quality individuals, in which physiolog-

ical costs of infection are below the detection threshold. In support with this hypothesis, one of

the few significant results that we found was that infected juveniles were in better condition

than uninfected juveniles, such as in [45]. This makes sense because juveniles are more likely

to be primo-infected, and infected at higher intensities, than adults [1]. Furthermore, studies

conducted in the UK observed that house sparrow declines are associated with reduced juve-

nile recruitment linked to lower overwinter survival [115, 116] and that the intensity of blood

parasite infection reduced survival, even if this effect was also detected in adults [34]. There-

fore, it would also be interesting to measure parasite intensities in our house sparrow samples

to test how the parameters measured are correlated with parasitaemia and would corroborate

the study conducted in the UK [34].

Conclusion

To conclude, this study highlights the complexity of avian haemosporidan parasite dynamic as

well as the difficulty to detect potential associated costs, especially in natural populations. Sea-

sonality, selective disappearance of infected individuals of different quality, age or sex, and

habitat-associated factors could interact and reduce our capacity to detect the effects of blood

parasites, if there are any. Thus, the statistical power, limited in our study, has to be large

enough to be able to test (and detect) these multiple interactions. Moreover, avian haemospor-

idian parasites consist of three genera comprising many species and strains [68, 117, 118],

which could be different in term of biology, ecology and virulence [1, 119]. Co-infections

between two or more blood parasite lineages could also have amplified negative effects [120,

121]. Considering these different levels of diversity would improve our understanding about

these parasites and their effects on wild populations. In natural populations, longitudinal sam-

pling during the course of the year (e.g. including the non-breeding season [84]) could provide

valuable information on parasite dynamics and associated selective processes. A longitudinal

survey could also be carried out using experimental approaches that simulate different envi-

ronments (e.g. urban versus rural) and could provide knowledge about the evolutionary ecol-

ogy of this very common, but still poorly understood, wild bird parasite.
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